پایداری هایرز - اولام - راسیاس یک معادله مربعی

پایان نامه
چکیده

در طول این پایان نامه پایداری نا برابری های مربعی پیکسیدر شده دو نوع تابع را ثابت می کنیم .

منابع مشابه

پایداری هایرز-اولام-راسیاس معادلات تابعی

تاکنون پایداری به مفهوم هایرز-اولام-راسیاس برای بسیاری از معادلات تابعی بررسی شده است.در این رساله پایداری چند معادله تابعی را بررسی خواهیم کرد. در این راستا بعضی نتایج پایداری هایرز-اولام برای نگاشت های مجموعه ای مقدار با استفاده از روش عملگر پیکارد به طور ضعیف را بررسی خواهیم نمود.همچنین،کاربردی از شمول انتگرالی را ارائه و انواع مختلف پایداری اولام برای معادلات انتگرالی نگاشت های مجموعه ای مق...

راه حل کلی پایداری هایرز - اولام - راسیاس برای یک معادله تابعی مکعبی

در این پایان نامه، پایداری هایرز - اولام - راسیاس معادله تابعی مکعبی ‎ f(mx‎ + ‎y)‎ + ‎f(mx‎ -‎y) = mf(x+y)‎ + ‎mf(x-y)‎ + ‎m f(x-y)‎ + ‎2(m3-m)f(x) را جاییکه m?1 عدد صح?ح مثبت است را بدست می آور?م همچنین با استفاده از روش نقطه ثابت پایداری هایرز - اولام - راسیاس را برای معادله تابعی ‎f(2x+y) = 2f(x)‎ + ‎f(y)‎ + ‎f(x+y)‎ - ‎f(x-y)‎ در فضای باناخ اثبات خواهیم کرد

پایداری هایرز-اولام-راسیاس برخی از معادلات تابعی

دراین پایان نامه قضایای پایداری هایرز-اولام-راسیاس معادلات تابعی را ثابت می کنیم.

پایداری اولام-گاوروتا-راسیاس معادله تابعی خطی

پایداری اولام-گاوروتا-راسیاس معادله تابعی خطی را در فضاهای باناخ و ناارشمیدسی بررسی میکنیم.سپس نوع تعمیم یافته معادله تابعی خطی را در فضاهای برداری بررسی میکنیم.

15 صفحه اول

پایداری ناارشمیدسی هایرز-اولام معادلات دیفرانسیل خطی ناهمگن مرتبه‌ دوم

فرض کنیم فضای نرمدار ناارشمیدسی اعداد حقیقی باشد. معادله دیفرانسیل خطی ناهمگن مرتبه‌ دوم با ضرایب غیرثابت را در نظر می‌گیریم که در آن توابع داده شده پیوسته هستند. در این مقاله پایداری هایرز-اولام این معادله را در فضای نرمدار ناارشمیدسی اعداد حقیقی ثابت می‌کنیم. معادله دیفرانسیل خطی ناهمگن مرتبه‌ دوم با ضرایب غیرثابت را در نظر می‌گیریم که در آن توابع داده شده پیوسته هستند. در این مقاله پایداری ه...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده علوم

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023